Isolation of cytoplasmic NADPH-dependent phenol hydroxylase and catechol-1,2-dioxygenase from Candida tropicalis yeast

نویسندگان

  • Lenka Vilímková
  • Jan Páca
  • Veronika Kremláčková
  • Jan Páca
  • Marie Stiborová
چکیده

The efficiencies of NADPH-dependent phenol hydroxylase (EC 1.14.13.7) and catechol 1,2-dioxygenase (EC.1.13.11.1) in biodegradation of phenol in the cytosolic fraction isolated from yeast Candida tropicalis were investigated. Enzymatic activities of both NADPH-dependent phenol hydroxylase and catechol 1,2-dioxygenase were detected in the cytosolic fraction of C. tropicalis grown on medium containing phenol. Using the procedure consisting of chromatography on DEAE-Sepharose, fractionation by polyethylene glycol 6000 and gel permeation chromatography on Sepharose 4B the enzyme responsible for phenol hydroxylation in cytosol, NADPH-dependent phenol hydroxylase, was isolated from the cytosolic fraction of C. tropicalis close to homogeneity. However, fractionation with polyethylene glycol 6000 lead to a decrease in catechol 1,2-dioxygenase activity. Therefore, another procedure was tested to purify this enzyme. Gel permeation chromatography of proteins of the eluate obtained by chromatography on a DEAE-Sepharose column was utilized to separate phenol hydroxylase and catechol 1,2-dioxygenase. Among gel permeation chromatography on columns of Sephadex G-100, Sephacryl S-300 and Sepharose 4B tested for their efficiencies to isolate phenol hydroxylase and catechol 1,2-dioxygenase, that on Sephacryl S-300 was found to be suitable for such a procedure. Nevertheless, even this chromatographic method did not lead to obtain catechol 1,2-dioxygenase in sufficient amounts and purity for its further characterization. The data demonstrate the progress in resolving the enzymes responsible for the first two steps of phenol degradation by the C. tropicalis strain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High potential of thermotolerant Candida tropicalis no. 10 for high concentration of phenol biodegradation

A thermotolerant Candida tropicalis strain No. 10 was isolated from a chemical contaminated soil sample. The strain was capable of degrading 100 mg/L phenol completely from 20-42°C, a wider temperature range than those previously reported in yeasts. It could also completely degrade phenol at an initial concentration up to 1,000 mg/L in a minimum mineral salt medium. The optimum temperature and ...

متن کامل

Analysis of bacterial degradation pathways for long-chain alkylphenols involving phenol hydroxylase, alkylphenol monooxygenase and catechol dioxygenase genes.

Eighteen 4-t-octylphenol-degrading bacteria were isolated and screened for the presence of degradative genes by polymerase chain reaction method using four designed primer sets. The primer sets were designed to amplify specific fragments from multicomponent phenol hydroxylase, single component monooxygenase, catechol 1,2-dioxygenase and catechol 2,3-dioxygenase genes. Seventeen of the 18 isolat...

متن کامل

An isolated Candida albicans TL3 capable of degrading phenol at large concentration.

An isolated yeast strain was grown aerobically on phenol as a sole carbon source up to 24 mM; the rate of degradation of phenol at 30 degrees C was greater than other microorganisms at the comparable phenol concentrations. This microorganism was further identified and is designated Candida albicans TL3. The catabolic activity of C. albicans TL3 for degradation of phenol was evaluated with the K...

متن کامل

Biodegradation of phenol by Antarctic strains of Aspergillus fumigatus.

Taxonomic identification of three newly isolated Antarctic fungal strains by their 18S rDNA sequences revealed their affiliation with Aspergillus fumigatus. Phenol (0.5 g/l) as the sole carbon source was completely degraded by all strains within less than two weeks. Intracellular activities of three key enzymes involved in the phenol catabolism were determined. Activities of phenol hydroxylase ...

متن کامل

19F nuclear magnetic resonance as a tool to investigate microbial degradation of fluorophenols to fluorocatechols and fluoromuconates.

A method was developed to study the biodegradation and oxidative biodehalogenation of fluorinated phenols by 19F nuclear magnetic resonance (NMR). Characterization of the 19F NMR spectra of metabolite profiles of a series of fluorophenols, converted by purified phenol hydroxylase, catechol 1,2-dioxygenase, and/or by the yeast-like fungus Exophiala jeanselmei, provided possibilities for identifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2008